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Abstract. The ongoing myelination of white-matter fiber bundles plays a sig-
nificant role in connectivity during development. However, reliable and con-
sistent identification of tracts is often challenging due to motion artifacts and 
inherently low diffusion anisotropy in infant brain MRIs. In this paper we in-
troduce a new atlas-based probabilistic tractography tool specifically designed 
for newborn infants. Our tool incorporates prior information on tracts and the 
underlying morphology from a training data set. In our experiments, we analyze 
a set of both full term and prematurely born infants and demonstrate that we are 
able to consistently, robustly and accurately recover known white-matter tracts 
in both groups. As such our tool paves the way for performing a host of sophis-
ticated analyses in newborns that have been heretofore possible only in adults, 
such as pointwise analysis along tracts and longitudinal analysis, in both health 
and disease. 
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1 Introduction 

Robust and reproducible tools to study normal brain development and early brain 
injury are of great interest. During the later stages of pregnancy and in the early neo-
natal period the brain is developing very rapidly and is also very vulnerable to injury 
[1, 2]. Diffusion-weighted MRI can be used to characterize normal or atypical brain 
development, as myelination, pre-myelination, and white matter (WM) injury can be 



characterized by diffusion parameters [3]. A major challenge in studying infant brains 
is the region-specific rates of development; different WM tracts, for instance, myelin-
ate at different ages and rates. Region of interest (ROI)-based measurements have 
been used to study developmental changes and injury [2, 4]. However, this approach 
is highly susceptible to observer bias, inter-observer variability and is less anatomical-
ly meaningful, as it does not incorporate measurements along the entire length of a 
tract. Tractography-based experiments have shown improved reproducibility of diffu-
sion metrics compared to ROI-based methods, suggesting that this approach may also 
provide more informative biomarkers when characterizing brain injury.  

Tractography tools can be divided into local or global, depending on how they in-
tegrate the diffusion orientations across voxels, and deterministic or probabilistic, 
depending on how they model those orientations locally. Local (“streamline”) meth-
ods grow a pathway one voxel at a time, relying on the local diffusion orientation 
around that voxel only. Global methods fit the pathway to the diffusion orientations 
over its entire trajectory, making it less sensitive to a localized region of high uncer-
tainty (e.g., a crossing or lesion) somewhere along the path. Deterministic methods 
use the most probable diffusion orientation at each step of the reconstruction, while 
probabilistic ones also model the variability in the orientation. Probabilistic methods 
explore more connections but are very sensitive to the placement of the seed ROIs. 

  
Fig. 1. (Left) Cortical and subcortical segmentation labels displayed on the structural MRI of 

an infant. (Right) Manually annotated tracts of a sample subject: CST (light blue), FMIN 
(green), FMAJ (bright green), IFOF (beige), ILF (purple), UF (red) and SLF (light brown). 

One can annotate specific WM bundles manually on the output of whole-brain 
tractography, but this can be a biased and time-consuming process. Alternatively, 
there exist automated clustering tools that rely on either feature similarities among 
neighborhood tracts (such as shape and distance) or information from previously cu-
rated training data to identify tract bundles [5-7]. These tools are unfortunately often 
sensitive to distance metric definition and tract reconstruction in presence of WM 
anomaly, making point-to-point correspondence along the tractography solutions 
difficult to establish when comparing multiple subjects. In this paper, we propose to 
develop an atlas-based probabilistic tractography tool that is capable of consistently 
extracting a set of major WM bundles even in the case of lower image quality and 
potential structural abnormalities. Our approach is inspired by TRACULA, a publicly 
available tool for automated reconstruction of a set of major WM pathways in Free-
Surfer [8]. It augments global probabilistic tractography with anatomical priors. Prior 
distributions on the neighboring anatomical structures of each pathway are derived 



from an atlas and combined with cortical and sub-cortical segmentation labels to con-
strain the tractography solutions. It has been demonstrated that TRACULA can accu-
rately reconstruct tracts in disease populations, even if the atlas includes only healthy 
subjects [9]. Although TRACULA and the FreeSurfer tools were designed and exten-
sively tested on adult data sets, they have been successfully applied to children as 
young as 4.5 years of age [10]. However, due to vast morphological differences and 
reversed grey-white contrast, they are not directly applicable to our newborn popula-
tion. 

2 Methods 

We have developed a framework where all computational components have been 
adapted or newly developed specifically to address the challenging image processing 
requirements of newborn MRI data. Our global tractography tool benefits from prior 
anatomical knowledge on the pathways that we want to reconstruct, unlike explorato-
ry tractography methods that aim to discover which brain region is connected to 
which. Importantly, however, our model does not assume that the pathways have the 
same shape, size, or integrity in the study subjects as in the atlas subjects; only that 
they go through the same broad areas of anatomy. 
Training data set (atlas) construction: 
Structural data processing: In order to obtain the cortical and subcortical segmenta-
tion labels of anatomical areas of interest, which are included in the priors used by our 
tractography, we first used our novel double-consensus skull-stripping approach to 
identify the brain region. Even though it is a challenging task in the newborn popula-
tion, with this tool we achieved over 90% Dice coefficient overlap measure when 
compared to expert-delineated brain masks. Then, for the segmentation, we imple-
mented a Bayesian multi-label atlas fusion framework based on [11]. Instead of rely-
ing on the intensities of the training images, we used the consistency of voxel intensi-
ties within target regions and their relation to the propagated labels. This was critical 
for segmenting scans with varying degrees of myelination. In total, we identified 23 
subcortical regions as well as 7 cortical areas per hemisphere (including the prefron-
tal, premotor, primary motor, primary somatosensory, posterior parietal, occipital, and 
temporal regions) (Fig. 1, left). For this automated segmentation task we relied on 
DRAMMS [12] to register our input data sets. In order to align the corresponding 
structural and diffusion acquisitions of a subject we applied FLIRT. 
Manual tract annotation: We adapted rules from [13] to infants to annotate twelve 
major WM pathways, all crucial in development and relatively well-characterized by 
neuroanatomists: the forceps major and minor of the corpus callosum (FMIN, FMAJ), 
and bilateral corticospinal tract (CST), inferior longitudinal (ILF), inferior fronto-
occipital (IFOF), superior longitudinal (SLF), and uncinate fasciculi (UF) (Fig 1, 
right). Our annotations were performed using Trackvis (http://trackvis.org) by a set of 
trained experts under the supervision of a neuroradiologist (CJ) with 5 years of expe-
rience in image analysis. In a subset of our data, we also estimated the inter-rater reli-



ability of the manual annotations. This resulted in a highly satisfying average Dice 
overlap score of 83.6%, indicating consistent reproducibility of our annotation rules. 
Common spatial coordinate space: We established an unbiased common spatial co-
ordinate space from our training subjects with a robust template construction tool 
using affine registration [14]. This serves as a reference space for the training data 
used in our tractography reconstruction, although the tractography itself takes place in 
the individual’s native space. Our method does not rely on perfect spatial alignment 
between the individual and the atlas, because it uses the positions of the tracts relative 
to the segmentation labels, rather than their exact spatial coordinates. Thus an affine 
registration was sufficient for accurate tract reconstructions. 
 
Automated tractography: 
We incorporated the neonate segmentations and manually labeled tracts into a Bayes-
ian framework, following the approach of TRACULA [8]. Our tool relies on global 
probabilistic tractography with prior distributions on the anatomical structures that 
each pathway intersects or neighbors, derived from the training data. In this frame-
work the unknown pathway ℱ in any new test subject is estimated from the diffusion-
weighted images 𝑌  of that subject via the posterior probability distribution: 
𝑃 ℱ 𝑌 ∝  𝑃 𝑌 ℱ 𝑝 ℱ . The likelihood term 𝑃 𝑌 ℱ  models the variability in the 
measured data given the shape of the pathway in the specific subject and the prior 
distribution 𝑃 ℱ  the variability in the pathway shape among subjects. We use the 
same formulation to compute the likelihood term as [15], which assumes Gaussian 
noise and uses the “ball-and-stick” model of diffusion. We used the bedpostx tool in 
FSL to estimate the distributions of the parameters of this model at each voxel given 
the diffusion data. Our departure from [15] is that, instead of assuming equal prior 
probability for all possible paths connecting two regions of interest, we use a prior of 
the form: 𝑝 ℱ = 𝑝 ℱ 𝐴,  𝐹! !!!

! , 𝐴! !!!
! , where A is the anatomical segmentation 

map of the test subject, and 𝐹! , 𝑘 = 1,… , 𝑛 is the pathway of interest in each of the n 
training subjects, and 𝐴! , 𝑘 = 1,… , 𝑛 is the anatomical segmentation map of each 
training subject. Our reconstruction took 1-2 min per tract on a Linux computer with 2 
Quad Core Xeon processors, 3.0 GHz CPU and 32GB of RAM. 
 
Infant data sets: We used two sets of infant MRI data for our atlas building and vali-
dation. Full-terms: Ten healthy, full-term infants born at 38-41 weeks were scanned 
within the first week of life at Boston Children's Hospital using a Siemens 3T Skyra 
with the following sequences: motion-compensated multi-echo 1 mm3 MPRAGE and 
2 mm3 diffusion (TE = 104 ms, TR = 3700 ms; b=1000 s/mm2, 30 dirs) accelerated 
with 2xGRAPPA and simultaneous multi-slice factor of 2. Pre-terms: Fifteen prema-
ture subjects, at three different imaging centers, born at 27-32 weeks were imaged at 
41 weeks on either a 3T Philips or a 1.5T Siemens scanner with an 8-channel coil: fast 
field echo (1.2 mm coronal slices, in-plane resolution 0.27 mm, TR = 18.9 ms, TE = 
4.6 ms, flip angle 8°, Tacq = 2:34 min) and diffusion-weighted EPI (1 b = 0 volume, 32 
b = 1000 volumes, 3 mm axial slices, in-plane resolution 1.56 mm, TR = 2.98 s, TE = 
68 ms, Tacq = 2:35 min) in the case of the former and FLASH (4.0 mm sagittal slices, 
in-plane resolution 0.43 mm, TR = .38 ms, TE = 5.52 ms, flip angle 90°, Tacq = 2:40 



min) and diffusion-weighted EPI (2 b = 0 volumes, 24 b = 1000 volumes, 2.2 mm 
axial slices, in-plane resolution 1.97 mm, TR = 7.6 s, TE = 98 ms, Tacq = 2:43 min) in 
the case of the latter. 

3 Experiments and results 

An important question for any atlas-based method is whether the inclusion of subjects 
from different populations affects the accuracy of the output. In the case of infants, in 
particular, where data is scarce and quality variable, it would be crucial to be able to 
pool data from different acquisition sites and studies in our atlas. To investigate this, 
we performed automated tractography on all subjects using three different training 
sets: full-term subjects only, pre-term subjects only, and all subjects. Whenever the 
test subject belonged to a population included in the training set, we removed the test 
subject from the training set. In the results we use “F”, “P”, and “A” to denote, re-
spectively, the set of full-term only, pre-term only, or all subjects. Each experiment is 
denoted as t|T, where t the test set and T the training set (t, T ∈ {F, P, A}). We organ-
ize results into five experiments: F|F, A|A, P|P, F|P and P|F. 

  
Fig. 2. (Left) Automatically reconstructed pathways in a premature subject. The estimated 
posterior distribution of each pathway is displayed as an isosurface in coronal and sagittal 
views: FMAJ / FMIN (red), CST (purple), ILF (orange), UF (blue), SLF (grey) and IFOF (cy-
an). (Right - Top) Example pathways difficult or impossible to obtain during manual annota-
tion (Right - Bottom) Maximum-intensity projections of the automatically reconstructed poste-
rior distributions of the same pathways. 

Fig 2 displays, on the left, the full set of 12 automatically reconstructed pathways 
in a premature subject, using the remaining 24 subjects as the training set and, on the 
right, a set of examples of pathways that were difficult or impossible to obtain during 
manual annotation, but were successfully reconstructed with our automated approach. 
Quantitatively, we evaluated the accuracy of our automatically reconstructed path-
ways by comparing them to the corresponding manually labeled pathways from the 



same subject. We quantified accuracy as the modified Hausdorff distance (MHD) 
between the automatically reconstructed pathway and its manually labeled equivalent. 
We define the MHD between two labels as the minimum distance of each point on 
one label from the other label, averaged over all points on the two labels. Before 
computing the MHD, the posterior probability distribution estimated by our automat-
ed tractography method was thresholded by masking out all values below 20% of the 
maximum. Thus the comparison is based on the center of the distribution and not its 
tails, as we expect the center and not the tails to overlap with the manual labels.  

 
Fig. 3. Modified Hausdorff distances (in mm) between automatically reconstructed and manu-
ally labeled pathways. For all 12 pathways, we show results with 5 combinations of test and 

training data, each denoted as (test set) | (training set), F: full-term, P: pre-term, A: all subjects.  

Figure 3 shows box plots of the MHD between automatically reconstructed and 
manually labeled tracts for each combination of test and training data. The horizontal 
line inside each box marks the median, whereas the edges of the box mark the 25th 
and 75th percentiles. The median MHD over all the analyses performed here was 
2.61mm, and the interquartile range was 2.39mm. This indicates that, in most cases, 
the distance between automatically reconstructed and manually labeled tracts was less 
than 2 diffusion voxels. Note that some differences between the manual and automat-
ed approaches may be desirable. This would be the case, for example, when the man-
ual approach cannot find a specific tract but the automated approach, aided by the 
training data and anatomical segmentation, can (see Fig 2, right). 

A three-way analysis of variance on the distance, where the three factors were 
tract (12 levels), test set (2 levels: full-term or pre-term), and training set (3 levels: 
full-term, pre-term, or all) showed a significant effect of tract (p=0.01) and test set 
(p<0.0001), but not of training set (p=0.95). That is, the accuracy of the reconstruc-



tion depends on the test data but not on the training data. This implies that, for a given 
test subject, the accuracy is similar whether the atlas consists of full-term subjects 
only, pre-term subjects only, or subjects from both groups. As the full-term and pre-
term subjects were scanned in different scanners with different acquisition protocols, 
we cannot determine if any differences in accuracy between test subjects from the two 
groups are due to data acquisition differences or population differences. However, an 
important conclusion that we can draw from these results is that it is possible to in-
clude subjects from different populations and acquisition sites in the training data of 
our algorithm without affecting its accuracy. This robustness to variability in the 
training data is due to the fact that our algorithm does not expect a specific image 
contrast, and does not rely on perfect alignment of subjects in a template space. The 
priors used in the algorithm involve only the position of each tract relative to a set of 
anatomical segmentation labels. 

4 Discussion 

We proposed a novel method for the automated reconstruction of WM tracts in 
newborn subjects. Even though short acquisition times and low contrast due to de-
layed or incomplete maturation make data from this population very challenging, our 
tool reconstructed the pathways of interest successfully. This work will make availa-
ble, for the first time, a robust diffusion tractography tool that is applicable not only in 
the healthy control infant population, but also in subjects born prematurely. As part of 
this development, we also established, to the best of our knowledge, the largest manu-
ally annotated tractography data set for newborn infants.  

In the future, we plan to run experiments with a more extensive training data set in 
order to establish the necessary and sufficient number of subjects that will be needed 
for our tool to be robust in a wide variety of settings. We are currently in the process 
of incorporating additional WM bundles to the set of 12 that we presented here, as 
well as extensively comparing the performance of our tool to that of publicly availa-
ble clustering solutions. Upon completion, we plan to release the atlas along with the 
automated tractography tool for research use. 
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