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Abstract. Quantifying placental volume and morphology is important
for the study of adverse pregnancy outcomes and fetal programming.
However, robust segmentation of the placenta in 3D ultrasound images
remains a challenging task because of the variability of the shape, posi-
tion and appearance of the placenta in these images, as well as the high
level of noise. Current approaches require substantial user interaction to
initialize segmentation. We propose the first fully automated approach to
segment the placenta from 3D US images, using the multi-atlas label fu-
sion framework. Multi-atlas label fusion methods have gained popularity
in recent years given their high performance in a variety of challenging
segmentation tasks. To obtain accurate registration between unseen tar-
get images and manually annotated atlases for placenta segmentation,
we propose an initialization scheme that automatically aligns the atlases
and target image using 3DUS cone alignment and image denoising. Then,
a bootstrapping approach is implemented to boost the segmentation ac-
curacy by using the results of the first round of multi-atlas label fusion
to improve initialization of a second round of multi-atlas label fusion. We
evaluate our method in a dataset of 13 subjects in first trimester of preg-
nancy with anterior placentas, in a leave-one-out study. The Dice overlap
between our proposed algorithm and expert manual segmentations was
83.2 ± 5.3%, on par with existing interactive approaches.
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1 Introduction

Adverse pregnancy outcomes, including preeclampsia and intrauterine growth re-
striction, are significant contributors to perinatal morbidity and mortality, and
are believed to have their roots in abnormal placental development. Clinicians
have observed that placental size and shape are significantly associated with
perinatal outcomes and fetal programming [3, 4, 2]. In particular, 2D and 3D ul-
trasound has been used to study early, in utero placental size and morphology in
relation to birthweight and preeclampsia [16, 15]. As such, placental morphology
is crucially important for assessing gross placental development in vivo.
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Nevertheless, quantification of the placenta from 3D ultrasound images is
a challenging task, especially in early pregnancy when the appearance of the
placenta and uterine tissue are not well differentiated. This lack of contrast makes
it difficult to accurately detect the boundary, especially given the noisy nature of
3DUS images. Additionally, the shape and relative location of the placenta are
highly variable, which in some cases make it difficult to even detect the location of
the placenta automatically, much less determine its precise boundaries. Uterine
contractions can also dramatically affect the shape of the placenta.

As a result of these challenges, the current techniques for quantifying pla-
cental volume and morphology from 3D ultrasound images require substan-
tial amount of manual input from the user, which can be cumbersome and
poorly standardized. These include the commercial Virtual Organ Computer-
aided AnaLysis (VOCAL, GE Healthcare) software as well as a recent random-
walker algorithm [6, 17]. In contrast, we propose a fully automated segmentation
technique to maximize reliability and facilitate the integration of this technique
into bedside clinical care. Our proposed technique leverages the recently popular
multi-atlas segmentation technique [8, 19], which fuses information from a library
of expert-labeled example datasets and finds image boundaries where there is lit-
tle or no intensity contrast between the structure of interest and the surrounding
structures. This approach has been applied successfully to many such challeng-
ing segmentation problems such as identifying hippocampal subfields in MRI
of the brain [20, 18] and the mitral valve in pre-operative 3D echocardiography
[12] and is particularly relevant for placental imaging where maternal habitus
and fetal shadowing artifact can obscure these boundaries. While the placenta
shape and appearance are highly variable, we hypothesized that the multi-atlas
label fusion would nevertheless be able to produce accurate segmentations given
a large enough atlas set and a careful registration scheme.

2 Methods

The main contribution of this manuscript is the application of the multi-atlas
label fusion approach to the task of segmenting the placenta from US images.
While the individual components of the algorithm (such as deformable registra-
tion or label fusion) are not novel, our approach is nevertheless highly innovative
as it is the first fully automated placenta segmentation technique. An additional
advantage of our approach is that it relies exclusively on open-source software
that is readily available to the placental imaging community.

2.1 Multi-atlas label fusion framework

Registration-based segmentation approaches have long been popular strategies
in analyzing anatomical structures in medical images. Given an expert-annotated
atlas image, a target image can be segmented by deformably registering the atlas
to the image and applying the same deformation to the annotation. However, for
challenging segmentation tasks, there may be a large variability in the shape and
appearance of the structure being segmented, decreasing the generalizability of
a single atlas; alternatively, there may be weak boundaries between neighboring
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structures either due to lack of contrast or image noise, which may make an
accurate registration difficult to achieve. Multi-atlas label fusion (MALF) meth-
ods have recently been gaining popularity [8] as a general-purpose framework
for such challenging segmentation problems. As the name suggests, the general
idea is to leverage not one but multiple annotated atlases to segment an unseen
target image. Each atlas is deformably registered to the target image, and the
annotation for the atlas is deformed accordingly to generate a candidate seg-
mentation. The label fusion step seeks to combine these alternative solutions,
typically via a weighted voting scheme, into a single consensus segmentation.
A variety of techniques have been proposed to assign weights to each candi-
date, ranging from uniform weights for a simple majority vote approach to more
sophisticated schemes that aim to estimate the accuracy of each candidate by
taking into account the similarity between the atlas and the target image. Even
when some registrations fail or when some atlases are very different than the
target image, these techniques can still often achieve a good segmentation by
minimizing the weight of these poorly-matched candidates and instead focusing
on the well-matched candidates.

For the placenta segmentation task, we propose to use the joint label fu-
sion algorithm [20, 19]. This algorithm takes into account not only the similarity
of each atlas to the target image, but also the similarity between each pair of
atlases. The rationale for this approach is that pairs of atlases that are simi-
lar to each other are likely to generate similar candidate segmentations for the
target image and can be seen as redundant to some extent. If these are poorly
matched candidates, this can reduce the accuracy of the label fusion result. In
contrast, the joint label fusion approach jointly estimates the weights for the
atlases, which minimizes the redundancy from correlated atlases and leads to a
more robust segmentation result. This approach is particularly well-suited to the
placenta segmentation problem given the large variability of the placenta shape
and appearance; some target images will only have few well-suited atlases with
similar characteristics, and minimizing the impact from the remaining atlases is
imperative for satisfactory segmentation results. Fig. 1 illustrates this process.

Our overall approach consists of 3 main stages, as illustrated in Fig. 2. We
begin by rotating each image such that the axial direction of the ultrasound beam
is aligned with the z axis of the 3D image and applying a median filter to reduce
noise, in order to facilitate the subsequent linear and deformable registration
steps. Then, each atlas image is registered to the target image and we apply the
joint label fusion algorithm to generate an estimate for the placenta region in the
target image. We repeat the entire process by using this estimate as a region of
interest to maximize the registration accuracy in and around the placenta. Each
label fusion stage is followed by a post-processing step to remove any geometric
artifacts such as holes or disconnected pieces.

2.2 Pre-processing: US cone alignment and denoising

We begin by roughly aligning the image cones for each subject to facilitate
the subsequent registration steps. We threshold the image at 0 to obtain the
ultrasound cone and extract the surface of this region. The surface normals of
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Fig. 1. The joint label fusion process illustrated on the subject with the median Dice
score (84.9). Each atlas image is mapped (blue arrows) to the target image to generate
a candidate segmentation. Given the large natural variability in the placenta shapes, no
single atlas will map perfectly to each target image. However, our multi-atlas approach
allows us to capture this variability and produces robust segmentation results.

this cone are computed, and the average normal direction is the main axis of the
cone. We rotate the image such that this direction is aligned with the z axis of
the image, and we translate it such that the center of mass of the cone is located
at the origin. We apply a median filter with a neighborhood radius of 2 voxels
to reduce the amount of noise in the image. While this may lead to the loss of
fine-level details in the segmentation results, we found that this is well-suited for
this application because the placenta has a very smooth surface.

2.3 ROI estimation

Given a pre-processed target image and a set of pre-processed atlases, we regis-
ter each atlas to the target image. To this end, we perform a rigid registration
followed by a deformable registration. Given the high variability of the anatomy
and the noisy nature of the images, affine registration was found to be somewhat
unstable with respect to scale parameters and therefore skipped in this stage.
Normalized cross correlation was used as the similarity metric for all registra-
tion steps. Registration used an open-source implementation of greedy diffeo-
morphic image registration [1, 9] with fast cross-correlation metric computation.
The manual segmentations of the atlases were then deformed into the target
image space using the associated deformation fields, and the joint label fusion
algorithm [20] was used to combine these into a single consensus segmentation.
Mathematical morphology operators were used to remove topological defects.
Specifically, holes in the object segmentation were detected and filled, and er-
roneous islands and protrusions were removed by eroding the segmentation by
a 1-voxel radius, extracting the largest connected component, and dilating back
up with the same structuring element. Finally, we dilate the segmentation result
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Fig. 2. The placenta segmentation workflow. We begin by rigidly aligning each image
such that the US cone is aligned with the z axis and apply a median filter to reduce
noise, in order to facilitate the subsequent linear and deformable registration steps.
Then, each atlas image is registered to the target image and we apply the joint label
fusion algorithm to generate an estimate for the placenta region in the target image. We
repeat the entire process by using this estimate as an ROI to maximize the registration
accuracy in and around the placenta. Finally we apply a post-processing step to remove
any geometric artifacts such as holes or disconnected pieces.

by 10 voxels in each direction, in order to generate an ROI that includes any
under-segmented portions of the placenta.

2.4 Final segmentation

For the final segmentation, we perform the same general steps as the ROI esti-
mation, but in this stage we use the estimated ROI as a mask for registration.
The rationale for this repetition is that registration algorithms typically perform
better when they can be focused to a more ‘standardized’ problem such that the
moving and fixed images contain roughly the same anatomy. For example, skull-
stripped brain images tend to be easier to register accurately, compared to raw
images that may contain various amounts and types of non-brain tissue.

The target image is masked using the dilated ROI described above, and each
atlas is masked using the corresponding manual segmentation. We perform an
affine registration between these two masked images using the normalized cross-
correlation metric in a large neighborhood window (10× 10× 10 voxels), with a
mild smoothing during the greedy update step (1.732 voxels by 0.7071 voxels).
The deformable registration is performed on the unmasked images, but instead
the dilated ROI is used to mask the gradient computation during the optimiza-
tion. The image similarity term used was the normalized cross-correlation with
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a smaller neighborhood (4 × 4 × 4 voxels), and more smoothing was applied
during the greedy update step (5 voxels by 2 voxels). Any failed registrations,
e.g. caused by a strong dissimilarity of the placentas between the atlas and the
target, were detected and removed. To this end, the overlap between the ROI
estimated in the previous stage and each candidate segmentation generated in
this stage was computed, and the candidates in poor agreement with the ROI
(Dice < 0.4) were excluded. Then, the joint label fusion algorithm was used to
combine the remaining candidate segmentations. Holes in the object segmenta-
tion were detected and filled to generate the final segmentation.

3 Experimental Methods

3.1 Dataset

For our study, 14 women in first trimester of pregnancy were imaged with GE
Voluson E8 ultrasound machines. Each image had isotropic resolution (mean:
0.47mm, min: 0.34mm, max: 0.59mm). The images were exported in DICOM
format and converted to NIFTI during anonymization. Only subjects with an-
terior placentas were chosen for this study. One subject was excluded since the
placental position differed from the others by more than 90 degrees.

3.2 Expert manual segmentation

Each of the 14 subjects were manually segmented by Anon. under the supervision
of Anon., who has over 10 years of experience in prenatal ultrasound imaging
and who has segmented 100’s of placentas for other research endeavors. Anon.
provided guidance for Anon.’s training and performed final inspection and ap-
proval for each segmentation. The publicly available ITK-SNAP software4 [22]
was used for segmentation. In each case, the perimeter of the placenta was man-
ually traced in multiple slices in all 3 planes. The border of the fetal side of
the placenta was easily visualized as there is a stark contrast between the ane-
choic amniotic fluid within the amniotic cavity and the echogenic placental mass.
The border on the maternal side of the placenta was less pronounced, although
the slightly more echogenic placental tissue was generally discernible from the
surrounding myometrium. While the sparse segmentation was only performed
approximately every 5 slices, the adjacent slices as well as the other 2 planes
were able to inform the manual segmentation when the borders were less clear.
The sparse segmentation was inspected by Anon. and any corrections made prior
to a final inspection and approval. This manually defined sparse manual segmen-
tation was then interpolated to create a smooth label map of the entire placenta,
which was also reviewed by the manual experts.

3.3 Evaluation criteria

We evaluate the performance of our proposed algorithm in a leave-one-out val-
idation study. For each of the 13 images, we use the remaining 12 images as

4 www.itksnap.org
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Dice%Overlap Jaccard%Overlap Volume%Similarity False%Positive%Rate False%Negative%Rate
ROI%estimate%with%JLF 0.77%±%0.07 0.63%±%0.09 F0.03%±%0.22 0.21%±%0.09 0.23%±%0.12
ROI%estimate%with%MV 0.66%±%0.11 0.51%±%0.12 F0.25%±%0.33 0.23%±%0.09 0.39%±%0.17

Final%segmentation 0.83%±%0.05 0.72%±%0.08 0.01%±%0.19 0.16%±%0.10 0.16%±%0.09

Table 1. Volumetric accuracy measures for the ROI estimate (pre-dilation) and fi-
nal segmentation stages compared to the manual expert segmentations. Average and
standard deviation of each measure is reported.

Auto%to%Manual Manual%to%Auto
ROI%estimate 2.88%±%1.46 2.59%±%1.27

Final%segmentation 1.95%±%1.06 1.75%±%0.88

Table 2. Surface-to-surface error measures between the automated and manual expert
segmentations. The ROI esimate is pre-dilation. The average and standard deviation
of distance is reported in mm, from automated to manual and vice versa.

atlases to segment the target, and compare the automated segmentation to the
expert manual segmentation. Specifically, we report the Dice and Jaccard over-
lap measures as well as the false positive and false negative rates. We also report
the overall volume similarity (2Vauto−Vmanual

Vauto+Vmanual
), as well as surface-to-surface dis-

tances. To compute the surface-based error measures, we used the marching
cubes algorithm without smoothing to generate triangle mesh representations
of the placenta surfaces. Additionally, to illustrate the impact of the joint label
fusion method, we compare the ROI estimation with JLF to ROI estimation
with a simple majority voting scheme.

4 Results

Tables 1 and 2 summarize the volumetric and surface-based accuracy measures,
respectively. The overall accuracy of our fully automated segmentation approach
was found to be on par with the interactive approaches described in [6, 17], where
a Dice score of 0.86 was reported. We note that the third stage of our approach,
i.e. the bootstrapping of the registration scheme using the estimated ROI’s, offers
a substantial boost in accuracy. The joint label fusion also offers a substantial
improvement over a simplistic majority voting scheme. Fig. 3 presents qualitative
results for the subjects with best and worst Dice scores.

5 Discussion and Conclusion

We presented preliminary results for the first fully automated approach to the
segmentation of placentas from 3D ultrasound images. Compared to interactive
methods, automated methods offer excellent reproducibility and may facilitate
the integration into bedside clinical care. The availability of an automated tool
is thus expected to enhance our understanding of early placental development
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(a) Grayscale - best Dice (b) Segmentation

(c) Grayscale - worst Dice (d) Segmentation

Fig. 3. Qualitative segmentation results for the subject with the best (a-b) and worst
(c-d) Dice score in the dataset. Red: manual, yellow: automated.

and aid the study of environmental factors, such as maternal nutrition, that may
affect placental development and fetal growth.

Of the existing semi-automated placenta segmentation approaches, the com-
mercial VOCAL software requires 6-12 successive manual tracings of the placen-
tal perimeter, limiting the potential for placental biometry to be incorporated
as a bedside clinical tool. Moreover, interpolation of 3D placental shape from
only 6-12 2D slices is a likely source of error in placenta volume assessment with
this tool. Despite such limitations, studies have used VOCAL to demonstrate
a strong, independent association between placental measures at 11-14 weeks
with subsequent delivery of a small-for-gestational-age [16, 15] or macrosomic
infant [14] supporting the notion that placental size, even as early as the first
trimester, is a significant indicator of the functional potential of the placenta.
However, as with most if not all interactive image segmentation approaches,
the reproducibility of the VOCAL approach is problematic; for example, the
reported mean placental volume calculated by VOCAL at 11-14 weeks ranges
anywhere from 50 - 75cc [16, 15, 7, 11, 13, 21, 10].
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Recently, another semi-automated technique for placenta segmentation, using
a random-walker algorithm, from a 3DUS volume set has been developed [6, 17].
However, this approach requires the user to follow a specific protocol for placing
‘seed’ regions to define the placenta-uterine boundary, followed by additional
manual input to define the placental surface [5], and it can be quite sensitive to
deviations from this protocol [17]. The reliance on manual user input may lead
to similar issues and biases as VOCAL.

Thus, a standardized, reproducible, automated and validated tool to quanti-
tatively assess 3D placental morphology at the bedside is needed.

We evaluated the proposed fully automated method using a leave-one-out
approach in a dataset of 13 patients. Based on our segmentation assessment
(Dice overlap = 83±5), the performance of our approach is on par with the only
non-commercial semi-automated strategy presented in [17], which reports Dice
overlap of 86 ± 6, albeit on a larger data set. The absolute volume similarity
achieved by our method was −1.32 mL on average, compared to −0.78mL and
−6.2mL for the Random Walker (for two observers) and −1.53mL and −9.59mL
for VOCAL, reported in [17]. Given the importance of the overall placental
volume as a morphological endpoint in a variety of studies, this result is especially
promising.

We note that since the interactive random walker algorithm relies on the user
input for determining the location and appearance of the placenta, it is readily
applicable to both anterior and posterior placentas, whereas our approach is
currently limited to anterior placentas only. Extension of the proposed approach
to posterior or lateral placentas will likely require a more robust rigid/affine
registration scheme to detect the correct location of the placenta and/or an
automated atlas selection technique to identify atlases with similarly positioned
placentas. This extension as well as further evaluation on images from women
in their second and third trimester of pregnancy remain as future work.
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