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Abstract. Retrospective analyses of ultrasound images (US) are re-
quired to correlate the prenatal growth parameters with health outcomes
later in life. The reliability of such analyses depends upon the accurate
identification of US image planes. However, the different planes of any
single organ exhibit a high degree of intra-plane similarity in fetal US
images. In this paper, we present a general framework to automatically
identify the different planes of any single fetal organ. We fine-tune a pre-
trained convolutional neural network (CNN) to create a feature extractor
that derives the image features that are best for discriminating fetal US
images without any reliance on anatomical priors or preprocessing. The
generality of the learned US features makes it possible to classify the
different US planes irrespective of the fetal organs. Our method achieved
a mean accuracy of 94.97% and 85.74% in the classification of fetal head
and heart planes, which was higher than the state-of-the-art baseline
algorithms.
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1 Introduction

Ultrasound (US) imaging is the modality of choice for assessing structural and
functional parameters in fetal morphology [1]. US cross-sectional analysis of
each fetal organ is required to determine their development. In current clinical
practice, this assessment routinely occurs by acquiring images of the fetal organs
in utero and by measuring the size of different anatomical structures in the fetal
anatomy [2]. As the presentation of the fetus can change during image acqui-
sition, the reliability of the measurements obtained from the images is largely
dependent upon the correct identification of defined landmarks. Recent clinical
research in fetal health is attempting to determine the associations between fe-
tal structures, which have previously been ignored in routine clinical assessments
and external factors, e.g., maternal substance abuse [3], as a means of creat-
ing models to predict later health outcomes. The discovery of these associations



requires retrospective analysis on large fetal US datasets which predominantly
contain 2D snapshots acquired manually by sonographers for clinical fetal mon-
itoring. Thus it is necessary to classify the US images into different anatomical
viewing planes prior to the analysis, since different anatomical structures appear
on different planes. Manual categorization of these images can be tedious owing
to the structural similarities shared by the planes of the same organ and time
consuming to execute this task on a large number of images stored in hospital
database. We suggest that an automated classification framework can be uti-
lized to detect optimal imaging planes based on the underlying fetal organs and
their specific views/planes, which will facilitate later retrospective analysis; in
addition it is reproducible, and avoids inter- and intra-observer variability [4].

The automatic classification of the image planes in fetal US images is chal-
lenging due to a number of factors, such as low signal-to-noise-ratios (SNR)
maternal body mass, the small size and position of the fetus. Several research
studies have ventured into the classification of the fetal anatomical planes as
fixed standard planes [5–10]. To support retrospective analysis Kumar et al.
[5] have addressed the problem of identifying the major anatomical planes of
different organs by fusing US image features with object saliency information.
However, the more challenging problem is to automatically identify different
planes of the same organ, which is hindered by the intra-image plane similar-
ity. As an example, the dominant visual feature in images of the fetal cranium
showing the transthalamic plane (Fig. 1 (Left) (b)) and the transcerebellar plane
(Fig. 1 (Left) (c)) is the fetal skull, which obscures subtle differences between
the visual appearances of different structures inside the skull. Similarly visual
properties can be seen in the different planes of the heart depicted in Fig. 1
(Right).

Among the recent studies in the identification of different planes of a fetal
organ, Lei et al. [6] proposed a method to classify the axial, coronal, and sagittal
planes of the 2D US fetal face images, by combining scale invariant feature trans-
form (SIFT) descriptors with an aggregated Fisher vector (FV) representation,
to assist non-experts to perform accurate diagnosis and biometric measurements.
Chen et al. [11] used rich feature representation of the localized fetal structures
in US videos, but they required temporal information as a prior, which is not
available in 2D snapshots. State-of-the-art methods for 3D US plane detection
have leveraged the discriminative capabilities of machine learning technologies:
Yaqub et al. [12] used Random Forests to localize the mid sagittal plane as a
means of providing an accurate parasagittal plane of fetal head, while Sofka et
al. [13] used an Integrated Detection Network to detect several planes in the fetal
head by using the interdependence of the structural poses. However, these tech-
niques that rely on the 3D structural information cannot be applied to classify
the sub-planes of an organ in 2D US images, which are currently used in the clin-
ical practice. Approaches for 2D US images require methods which can overcome
the variability introduced during the acquisition by different machines, different
operators, imaging formats, resolution, and magnification etc., and also should



not depend on any spatial (3D) or temporal priors to support the classification
task.

In this paper, we propose a general framework to automatically identify the
fetal sub planes in 2D US images; we demonstrate our method in the classification
of the fetal sub planes of heart and head. A key element of our method is the
use of convolutional neural networks (CNNs), a state-of-the-art deep learning
(machine learning) technique for generating meaningful feature extractors for
image data. These feature extractors can be used to derive numerical descriptors
that characterize the visual properties of the image, which in turn can be used
by image classification algorithms.We overcome the challenge of quantifying the
subtle differences in the US images of the same organ by fine-tuning a CNN
to derive an US specific feature extractor that is capable of generating image
features that are tuned to distinguish US images. We achieved fetal sub plane
classification using an ensemble of classifiers for each organ. To the best of our
knowledge, this is the first work to report the fetal sub plane classification in 2D
US images. Key contributions of our work are as follows:

1. We train an US specific feature extractor using major anatomical fetal US
images, which can be utilized to represent any fetal US images.

2. We show that our method is robust and can be used for multiple organs
through experiments on multiple planes of two different organs.
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Fig. 1. Left: Axial planes of fetal head (a) Transventricular plane; (b) transthalamic
plane; (c) transcerebellar plane. Right: Standardized transverse scanning planes for
fetal echocardiography (a) Three vessel trachea view; (b) right ventricular outflow
tract; (c) left ventricular outflow tract; (d) four chamber view.



2 Materials

We obtained a dataset of 5612 2D fetal US images (resolutions of either 640
x 480 pixels or 960 x 720 pixels). The images were acquired from 185 fetuses
using a GE Voluson E8 ultrasound machine. Experienced sonographers followed
the protocols defined by the AIUM [1] and International society of Ultrasound
in Obstetrics and Gynecology for imaging fetal structures during 18-20 week
morphology scan [14]. The images were divided into a training set (5229 images
from 100 fetuses) and a test set (209 heart planes and 174 head plane images
from 85 fetuses). The training images included different imaging planes of 15
major fetal structures1.

The test images were manually classified into 4 different heart planes and 3
different head planes by a medical imaging researcher under clinical supervision
to facilitate ground truth comparison. The heart planes included 77 images of
four chamber (4C), 29 images of left ventricular outflow tract (LVOT), 53 im-
ages of right ventricular outflow tract (RVOT), 29 images of three vessel and
tracheal view (3VT) and 21 images of heart not belonging to these planes were
grouped into a single group called other heart planes. The 3 different axial head
planes included 31 images of transcerebellar (TC), 28 images of transventricular
(TV), 98 images of transthalamic (TT), and 17 images of other head planes. Our
institutional ethics committee approved the use of these images in research.

3 US CNN Model and Feature extraction

We use CNNs to extract US image features because CNN’s exploit the local
correlations and sparseness in the image [15]. We trained an US specific feature
detector (US CNN) by using the US dataset to fine-tune the AlexNet CNN
model [16] pre-trained on the ImageNet database with 1000 natural object
categories. We replaced the last fully connected layer (intended for 1000 classes)
of the AlexNet architecture with a new fully connected layer for the 15 different
fetal structures in our dataset. A logistic loss layer was added to facilitate the
training process. The weights of the entire network of the fine-tuned model were
iteratively updated using backpropagation and stochastic gradient descent. We
used a learning rate of 10−3 for our new fully connected layer and learning rate
of 10−4 for the rest of the network. The higher learning rate for the last layer
was intended to enable faster learning of US specific weights for the 15 classes.
We increased the robustness of the algorithm by augmenting the data set, with
twenty four variations of the image (original crop c with additional 5 cropping
from all the corners and center of c) and 3-axes flipping (x axis, y axis and both
axes); thereby increasing the number of training samples. 90% of the augmented
training dataset was used for training and 10% for validation.

After fine-tuning, the US images could be represented by a 4096 dimen-
sional feature vector extracted from the last fully connected layer of the US-
1 Major fetal structures - abdomen, arm, blood vessels, cord insert, face, femur,

humerus, foot, genitals, head, heart, kidney, spine, leg and hand.
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Fig. 2. The framework of Fetal sub plane classification contains a feature extractor, a
classifiers for each fetal structure and sub classifiers to classify the sub-planes of the
fetal structures.

CNN model. We trained a one-vs-all SVM model [17] for all of the various
planes within each organ. Fig. 2 shows the overall framework of the sub plane
classification.

4 Experimental Procedure

Our experiments used a 10-fold training of one-vs-all SVMs to avoid biasing the
classifier to the training data. Of the 209 cardiac images, each fold used 188
images for training and 21 in testing. Of the 174 head images, each fold used
157 images for training and 17 in testing. We compared our proposed method
(US CNN) with two baselines: (i) a local descriptor based approach for US
plane classification (SIFT with FV encoding ), as it was used in [6] to classify
different planes of the same organ; and (ii) the 4096 feature vectors extracted
from AlexNet without fine-tuning (i.e., trained only on 1000 classes of natural
images) to study the performance of the CNN based classification. We measured
the performance of these methods using the classification accuracy, precision,
sensitivity, specificity and receiver operating characteristic (ROC) curves.

5 Results and Discussion

Table 1 compares our method with the baseline methods for fetal sub cranial
plane classification; Table 2 compares our method with the baseline methods



Table 1. Classification results of fetal sub cranial planes

Plane Method Accuracy Sensitivity Specificity Precision

TV US CNN 97.70 85.71 100 100
Baseline AlexNet 93.68 82.14 95.89 79.31

SIFT+FV 83.33 46.42 90.41 48.14

TT US CNN 93.10 95.92 89.47 92.16
Baseline AlexNet 90.23 92.86 86.84 90.10

SIFT+FV 78.73 80.61 76.31 81.44

TC US CNN 97.13 93.55 97.90 90.63
Baseline AlexNet 94.25 83.87 96.50 83.87

SIFT+FV 81.03 41.93 89.51 46.42

Others US CNN 91.95 35.29 98.09 66.67
Baseline AlexNet 93.68 52.94 98.09 75.00

SIFT+FV 91.37 35.29 97.45 60.00

Mean of all planes US CNN 94.97 77.61 96.36 87.36
Baseline AlexNet 92.96 77.95 94.33 82.07

SIFT+FV 83.61 51.06 88.42 59.00

Table 2. Classification results of fetal sub cardiac planes

Plane Method Accuracy Sensitivity Specificity Precision

4 Chamber US CNN 88.52 77.92 94.70 89.55
Baseline AlexNet 82.32 76.62 85.61 75.64

SIFT+FV 46.41 33.77 53.77 29.89

LVOT US CNN 80.86 17.24 91.11 23.81
Baseline AlexNet 84.21 17.24 95.00 35.71

SIFT+FV 68.42 3.45 78.89 2.56

RVOT US CNN 80.86 58.49 88.46 63.27
Baseline AlexNet 77.51 45.28 88.46 57.14

SIFT+FV 75.11 32.08 89.74 51.52

3V US CNN 87.08 41.38 94.44 54.55
Baseline AlexNet 85.17 20.69 95.56 42.86

SIFT+FV 84.68 10.34 96.66 33.33

Others US CNN 91.39 33.33 97.87 63.64
Baseline AlexNet 89.00 28.57 95.74 42.86

SIFT+FV 88.99 14.28 97.34 37.50

Mean of all planes US CNN 85.74 45.67 93.31 58.96
Baseline AlexNet 83.64 37.68 92.074 50.84

SIFT+FV 72.72 18.78 83.28 30.96



Fig. 3. ROC Curves for the detection of fetal sub cranial planes

for sub cardiac plane classification. Our method significantly outperformed the
SIFT+FV and generally had a higher accuracy than the baseline AlexNet. The
high accuracy of both our method and that of the baseline AlexNet confirms that
CNN features are robust, even when the baseline AlexNet is trained on natural
images. We attribute the high accuracy due to the extraction of the optimal
features using a fine-tuned CNN for US images.

Fig. 3 shows that our method obtained the highest accuracy in all the sub-
planes of the fetal head. The ROC has an area under the curve (AUC) close to
1 for all the planes of the head suggesting our method was able to discriminate
the structural differences between these planes. The Other group contained a
wide variety of images that did not belong to TV, TT, and TC. The variations
among this group meant that they were better represented by the generic features
extracted by AlexNet. We suggest that our method would have a higher accuracy
if the Other images were further divided into unique subgroups prior to SVM
training.

Our method was generally better than the baseline methods in sub-cardiac
plane classification, especially for the four-chamber view, which is clinically im-



Fig. 4. ROC Curves for the detection of fetal sub cardiac planes

portant in the assessment of congenital heart diseases [18]. Our method achieved
lower results for LVOT because there are many variations in these images, in-
cluding images where the blood vessels appear to merge. This level of variability
within a single plane makes LVOT harder to distinguish compared to planes with
more consistent appearance. We can improve our methodology by expanding our
training data to include more such variations, thereby improving the fine-tuning
of our CNN and the training of our SVMs.

The accuracy for the heart sub-plane classification is less than that of head
classification primarily because the heart sub-planes are naturally more difficult
to classify. This is because the fetal heart is a dynamic organ and its appear-
ance can dramatically change due to the contraction or expansion of the heart
in addition to the motion of the fetus and angle of the ultrasound probe. In
contrast, head planes generally have a static appearance and only need to recog-
nize variations introduced by the motion of the fetus and the probe angle during
acquisition. Such information can be captured from the structural poses in 3D
US or the temporal deformations in US video but in 2D US, which are among
the majority acquired and stored, only the specific characteristics of individual
images are available.

Our results show that the well-established process of fine-tuning a pre-trained
CNN to a particular task can be readily adapted to the problem of detecting dif-
ferent structures within a single organ and gives consistently better results than
other methods. We envision structure specific improvements which can differen-



tiate dilated and narrowed blood vessels to improve the classification accuracy
of outflow tracts in the heart planes. In future with organ specific optimizations,
our proposed method can be extended to categorize any anatomical US images.

6 Conclusion

In this paper, we presented a method to automatically classify different struc-
tures within the same anatomical fetal organ in 2D US images. Our classification
framework uses a fine-tuned CNN as feature extractor to discriminate struc-
turally similar objects. Furthermore, our method can serve as a prior for any
automated fetal segmentation, which requires accurate identification of the fetal
planes. In future, we will extend the prediction to a larger dataset and investigate
the hierarchical classification frame work of inter and intra fetal planes.
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